PIM60.125 **PIANO-Series** 12V, 5A, 60W, SINGLE PHASE INPUT #### POWER SUPPLY - 100-240V Wide-range Input - NEC CLASS 2 Compliant - Cost Optimized without Compromising Quality or Reliability - Width only 36mm - Efficiency up to 90.7% - Low No-load Power Losses - Full Power Between -10°C and +60°C - Large Screw Terminals - 3 Year Warranty ## **PRODUCT DESCRIPTION** The PIM60.125 is a DIN-rail mountable single-phase-input power supply, which provides a floating, stabilized and galvanically separated SELV/PELV/ES1 output voltage. The output fulfils the requirements for a limited power source according to NEC CLASS 2. The device is equipped with screw terminals, which are optimized for large wire sizes. The mechanically robust housing is made of a highgrade, reinforced molded material, which permits surrounding temperatures up to +70°C. The PIANO family is a compact industrial grade DIN-rail power supply series that focus on the essential features needed in today's industrial applications. The excellent cost/performance ratio does not compromise quality or reliability. # **SHORT-FORM DATA** | Output voltage | DC 12V | Nominal | |----------------------|--------------------|------------------------| | Adjustment range | 12 – 15V | Factory setting 12V | | Output current | 5.0 – 4.0A | Below +60°C ambient | | | 3.8 – 3.0A | At +70°C ambient | | | Derate linearly be | etween +60°C and +70°C | | Input voltage AC | AC 100-240V | ±10% | | Mains frequency | 50-60Hz | ±6% | | Input current AC | 1.0 / 0.6A | At 120 / 230Vac | | Power factor | 0.55 / 0.47 | At 120 / 230Vac | | Input inrush current | 15 / 36A peak | At 120 / 230Vac, 40°C, | | | | cold start | | Efficiency | 90.2 / 90.7% | At 120 / 230Vac | | Losses | 6.5 / 6.2W | At 120 / 230Vac | | Hold-up time | 23 / 107ms | At 120 / 230Vac | | Temperature range | -10°C to +70°C | | | Size (W x H x D) | 36x90x91mm | Without DIN-Rail | | Weight | 225g / 0.5lb | | | | | | ## **ORDER NUMBERS** Order number: Power Supply PIM60.125 # MAIN APPROVALS For details and a complete approval list see chapter 18. **IECEE CB SCHEME**IEC 62368-1 IIEC 61010-2-201 planned ((NEC CLASS 2 PIM60.125 **PIANO-Series** 12V, 5A, 60W, SINGLE PHASE INPUT ### **INDEX** | | | Page | | Page | |-----|------------------------------|------|--|------| | 1. | Intended Use | 3 | 15. Environment | 14 | | 2. | Installation Instructions | 4 | 16. Safety and Protection Features | 15 | | 3. | AC-Input | 5 | 17. Dielectric Strength | 16 | | 4. | DC-Input | 6 | 18. Approvals and Fulfilled Standards | 17 | | | Input Inrush Current | | 19. Regulatory Compliance | 17 | | 6. | Output | 7 | 20. Physical Dimensions and Weight | 18 | | | Hold-up Time | | 21. Application Notes | | | 8. | Efficiency and Power Losses | 9 | 21.1. Charging of Batteries | 19 | | 9. | Functional Diagram | 10 | 21.2. Series Operation | | | | Front Side and User Elements | | 21.3. Parallel Use to Increase Output Power. | | | 11. | Connection Terminals | 11 | 21.4. Parallel Use for 1+1 Redundancy | 19 | | 12. | Lifetime Expectancy | 12 | 21.5. Operation on Two Phases | 19 | | | MTBF | | 21.6. Use in a Tightly Sealed Enclosure | | | 14 | FMC | 13 | 5 , | | The information given in this document is correct to the best of our knowledge and experience at the time of publication. If not expressly agreed otherwise, this information does not represent a warranty in the legal sense of the word. As the state of our knowledge and experience is constantly changing, the information in this data sheet is subject to revision. We therefore kindly ask you to always use the latest issue of this document (available under www.pulspower.com). No part of this document may be reproduced or utilized in any form without our prior permission in writing. Packaging and packaging aids can and should always be recycled. The product itself may not be disposed of as domestic refuse. ### TERMINOLOGY AND ABREVIATIONS | PE and 🕏 symbol | PE is the abbreviation for P rotective E arth and has the same meaning as the symbol $\stackrel{}{=}$. | | | | | | | | |-----------------|--|--|--|--|--|--|--|--| | Earth, Ground | This document uses the term "earth" which is the same as the U.S. term "ground". | | | | | | | | | T.b.d. | To be defined, value or description will follow later. | | | | | | | | | AC 230V | A figure displayed with the AC or DC before the value represents a nominal voltage with standard tolerances (usually ±15%) included. E.g.: DC 12V describes a 12V battery disregarding whether it is full (13.7V) or flat (10V) | | | | | | | | | | | | | | | | | | 230Vac A figure with the unit (Vac) at the end is a momentary figure without any additional tolerances included. As long as not otherwise stated, AC 100V and AC 230V parameters are valid at 50Hz mains frequency. AC 120V parameters are valid for 60Hz mains frequency. **may** A key word indicating flexibility of choice with no implied preference. **shall** A key word indicating a mandatory requirement. **should** A key word indicating flexibility of choice with a strongly preferred implementation. PIM60.125 **PIANO-Series** 12V, 5A, 60W, SINGLE PHASE INPUT ## 1. INTENDED USE This device is designed for installation in an enclosure and is intended for commercial use, such as in industrial control, process control, monitoring, measurement, Audio/Video, information or communication equipment or the like. Do not use this device in equipment, where malfunctioning may cause severe personal injury or threaten human life without additional appropriate safety devices, that are suited for the end-application. If this device is used in a manner outside of its specification, the protection provided by the device may be impaired. Do not use this device on AC 100V mains with more than 3.6A load when the application is sensitive to short output voltage dips during mains interruptions even with a length shorter than 20ms. Without additional measures to reduce the conducted emissions on the output (e.g. by using a filter), the device is not suited to supply a local DC power network in residential, commercial and light-industrial environments. No restrictions apply for local DC power networks in industrial environments. ## **PRFIIMINARY** PIM60.125 **PIANO-Series** 12V, 5A, 60W, SINGLE PHASE INPUT ### 2. Installation Instructions **WARNING** Risk of electrical shock, fire, personal injury or death. - Turn power off before working on the device. Protect against inadvertent re-powering. - Make sure that the wiring is correct by following all local and national codes. - Do not modify or repair the unit. - Do not open the unit as high voltages are present inside. - Use caution to prevent any foreign objects from entering the housing. - Do not use in wet locations or in areas where moisture or condensation can be expected. - Do not touch during power-on, and immediately after power-off. Hot surfaces may cause burns. #### **Obey the following installation instructions:** This device may only be installed and put into operation by qualified personnel. This device does not contain serviceable parts. The tripping of an internal fuse is caused by an internal defect. If damage or malfunction should occur during installation or operation, immediately turn power off and send unit to the factory for inspection. Install device in an enclosure providing protection against electrical, mechanical and fire hazards. Install the device onto a DIN-rail according to EN 60715 with the input terminals on the bottom of the device. Make sure that the wiring is correct by following all local and national codes. Use appropriate copper cables that are designed for a minimum operating temperature of 60°C for ambient temperatures up to +45°C, 75°C for ambient temperatures up to +60°C and 90°C for ambient temperatures up to +70°C. Ensure that all strands of a stranded wire enter the terminal connection. Unused screw terminals should be securely tightened. The device is designed for pollution degree 2 areas in controlled environments. No condensation or frost is allowed. The enclosure of the device provides a degree of protection of IP20. The enclosure does not provide protection against spilled liquids. The isolation of the device is designed to withstand impulse voltages of overvoltage category III according to IEC 60664-1. The device is designed as "Class of Protection" I equipment according to IEC 61140. Do not use without a proper PE (Protective Earth) connection. The device is suitable to be supplied from TN, TT or IT mains networks. The continuous voltage between the input terminal and the PE potential must not exceed 300Vac. A disconnecting means shall be provided for the input of the device. The device is designed for convection cooling and does not require an external fan. Do not obstruct airflow and do not cover ventilation grid! The device is designed for altitudes up to 5000m (16400ft). Above 2000m (6560ft) the overvoltage category is reduced to level II and a reduction in output current is required. Keep the following minimum installation clearances: 40mm on top, 20mm on the bottom, 0mm left and right side. Increase the 0mm to 15mm in case the adjacent device is a heat source. The device is designed, tested and approved for branch circuits up to 20A without additional protection device. If an external fuse is utilized, do not use circuit breakers smaller than 6A B- or 4A C-Characteristic to avoid a nuisance tripping of the circuit breaker. The maximum surrounding air temperature is +70°C (+158°F). The operational temperature is the same as the ambient or surrounding air temperature and is defined 2cm below the device. The device is designed to operate in areas between 5% and 95% relative humidity. # 3. AC-INPUT The device is suitable to be supplied from TN, TT or IT mains networks. | AC input | Nom. | AC 100-240V | | | |---------------------------------|---|-------------|-------------------------------------|--| | AC input range | Min. | 90-264Vac | Continuous operation | | | | Min. | 264-300Vac | For maximum 500ms | | | Allowed voltage L or N to earth | Max. | 300Vac | Continuous according to IEC 60664-1 | | | Input frequency | Nom. | 50-60Hz | ±6% | | | Turn-on voltage | Тур. | 75Vac | Steady-state value, see Fig. 3-1 | | | Shut-down voltage | Тур. | 54Vac | Steady-state value, see Fig. 3-1 | | | External input protection | See recommendations in chapter "Installation Instructions". | | | | | | | AC 100V | AC 120V | AC 230V | | |-------------------|------|----------------|----------------|----------------|--| | Input current | Тур. | 1.15A | 1.0A | 0.60A | At 12V, 5A, see Fig. 3-3 | | Power factor | Тур. | 0.58 | 0.55 | 0.47 | At 12V, 5A, see Fig. 3-4 | | Start-up delay | Тур. | 50ms | 50ms | 60ms | See Fig. 3-2 | | Rise time | Тур. | 18ms | 18ms | 18ms | At 12V, 5A constant current load,
0mF load capacitance, see Fig. 3-2 | | | Тур. | 30ms | 30ms | 30ms | At 12V, 5A constant current load,
2mF load capacitance,, see Fig. 3-2 | | Turn-on overshoot | Max. | 100mV | 100mV | 100mV | See Fig. 3-2 | Fig. 3-1 Input voltage range Fig. 3-3 Input current vs. output load at 12V output voltage Fig. 3-2 Turn-on behavior, definitions Fig. 3-4 Power factor vs. output load at 12V output voltage # 4. DC-INPUT Do not operate this power supply with DC-input voltage. # 5. INPUT INRUSH CURRENT A NTC limits the input inrush current after turn-on of the input voltage. The inrush current is input voltage and ambient temperature dependent. The output load has no impact on the inrush current value. The charging current into EMI suppression capacitors is disregarded in the first microseconds after switch-on. | | | AC 100V | AC 120V | AC 230V | | |----------------|------|---------------------|---------------------|---------------------|-----------------------------| | Inrush current | Тур. | 12A _{peak} | 15A _{peak} | 36A _{peak} | At 40°C ambient, cold start | | | Тур. | $10A_{peak}$ | $12A_{peak}$ | $30A_{peak}$ | At 25°C ambient, cold start | | | Max. | $15A_{peak}$ | $18A_{peak}$ | $44A_{peak}$ | At 40°C ambient, cold start | | | Max. | $12A_{peak}$ | $15A_{peak}$ | $36A_{peak}$ | At 25°C ambient, cold start | | Inrush energy | Max. | $0.2A^2s$ | $0.3A^2s$ | $1.4A^2s$ | At 40°C ambient, cold start | Fig. 5-1 Typical turn-on behavior at 120Vac and 25°C ambient Fig. 5-3 **Typical turn-on behavior at 230Vac** and 25°C ambient Fig. 5-2 Zoom into the first inrush peak Fig. 5-4 Zoom into the first inrush peak PIM60.125 **PIANO-Series** 12V, 5A, 60W, SINGLE PHASE INPUT # 6. OUTPUT The output provides a SELV/PELV/ES1 rated voltage, which is galvanically isolated from the input voltage. The output is electronically protected against no-load, overload and short circuit. In case of a protection event, audible noise may occur. The output is designed to supply any kind of loads, including inductive and capacitive loads. Capacitive loads should not be larger than 2200µF with 5A or 8000µF with 2.5A additional current load. At heavy overloads (when output voltage falls below 8V), the device delivers continuous output current for 20ms. After this, the output is switched off for 170ms before a new start attempt is automatically performed. This cycle is repeated as long as the overload exists. | Output voltage | Nom. | . DC 12V | | | |---------------------------------|------|----------------------|--|--| | Adjustment range Min. | | 12-15V | Guaranteed value | | | | Max. | 15.5V | This is the maximum output voltage which can occur at
the clockwise end position of the potentiometer due to
tolerances. It is not a guaranteed value which can be
achieved. | | | Factory settings | Тур. | 12V | ±0.2%, at full load and cold unit | | | Line regulation | Max. | 10mV | Between 90 and 300Vac | | | Load regulation | Max. | 100mV | Between 0 and 5A, static value, see Fig. 6-1 | | | Ripple and noise voltage | Max. | 100mVpp | Bandwidth 20Hz to 20MHz, 50Ohm | | | Output current No | | 5.0A | At 12V and an ambient temperature below 60°C | | | | Nom. | 3.8A | At 12V and 70°C ambient temperature | | | | Nom. | 4.0A | At 15V and an ambient temperature below 60°C | | | Nor | | 3.0A | At 15V and 70°C ambient temperature | | | Overload behaviour | | Continuous current | Output voltage above 8Vdc, see Fig. 6-1. | | | | | Intermittent current | Output voltage below 8Vdc, see Fig. 6-1. | | | Overload/ short-circuit current | Max. | 7.0A | Continuous current, see Fig. 6-1. | | | | Тур. | 9.0A | Intermitted current peak value for typ. 25ms
Load impedance 150mOhm, see Fig. 6-2. | | | | Max. | 3.2A | Discharge current of output capacitors is not included.
Intermitted current average value (R.M.S.)
Load impedance 150mOhm, see Fig. 6-2. | | | Output capacitance | Тур. | 2 200µF | Included inside the power supply | | | Back-feeding loads Max. 16V | | 16V | The unit is resistant and does not show malfunctioning when a load feeds back voltage to the power supply. I does not matter whether the power supply is on or of The absorbing energy can be calculated according to the built-in large sized output capacitor. | | 12V, 5A, 60W, SINGLE PHASE INPUT Fig. 6-1 Output voltage vs. output current, typ. Fig. 6-2 Intermittent current at short circuit, typ. # 7. HOLD-UP TIME The hold-up time is the time during which a power supply's output voltage remains within specification following the loss of input power. The hold-up time is output load dependent. At no load, the hold-up time can be up to several seconds. The green DC OK lamp is also on during this time. | | | AC 100V | AC 120V | AC 230V | | |--------------|------|----------------|----------------|----------------|--------------| | Hold-up Time | Тур. | 13ms | 23ms | 107ms | At 12V, 5A | | | Тур. | 36ms | 55ms | 219ms | At 12V, 2.5A | | | Min. | 10.5ms | 18ms | 85ms | At 12V, 5A | | | Min. | 28.5ms | 43ms | 175ms | At 12V, 2.5A | Fig. 7-1 Hold-up time vs. input voltage Fig. 7-2 Shut-down behavior, definitions # 8. EFFICIENCY AND POWER LOSSES | | | AC 100V | AC 120V | AC 230V | | |--------------------|------|---------|---------|---------|---| | Efficiency | typ. | 88.9% | 90.2% | 90.7% | At 12V, 5A (full load) | | Average efficiency | typ. | 88.9% | 89.7% | 89.6% | 25% at 1.25A, 25% at 2.5A,
25% at 3.75A. 25% at 5A | | Power losses | typ. | 0.2W | 0.2W | 0.3W | At no load | | | typ. | 3.6W | 3.4W | 3.4W | At 12V, 2.5A (half load) | | | typ. | 7.5W | 6.5W | 6.2W | At 12V, 5A (full load) | The average efficiency is an assumption for a typical application where the power supply is loaded with 25% of the nominal load for 25% of the time, 50% of the nominal load for another 25% of the time, 75% of the nominal load for another 25% of the time and with 100% of the nominal load for the rest of the time. Fig. 8-1 **Efficiency vs. output current at 12V, typ.** Fig. 8-3 Efficiency vs. input voltage at 12V, 5A. tvp. Fig. 8-2 Losses vs. output current at 12V, typ. Fig. 8-4 Losses vs. input voltage at 12V, 5A, tvp. ## 9. FUNCTIONAL DIAGRAM # 10. FRONT SIDE AND USER ELEMENTS Fig. 10-1 Front side #### **A** Output Terminals Dual terminals for the negative and positive pole. Both poles are internally connected. - + Positive output - Negative (return) output #### **B** Input Terminals - L Phase (Line) input - N Neutral conductor input - PE (Protective Earth) input #### **C DC OK LED** (green) The LED is on, when the output voltage is above 9V. ### **D** Output Voltage Adjustment Potentiometer PIM60.125 **PIANO-Series** 12V, 5A, 60W, SINGLE PHASE INPUT # 11. CONNECTION TERMINALS The terminals are IP20 finger safe constructed and are suitable for field- and factory wiring. | | All Tamain als | |---|------------------------------| | | All Terminals | | Туре | Push-in termination | | Solid wire | Max. 6mm ² | | Stranded wire | Max. 4mm ² | | American Wire Gauge | AWG 20-10 | | Max. wire diameter (including ferrules) | 2.8mm | | Wire stripping length | 7mm / 0.28inch | | Recommended tightening torque | 1Nm, 9lb.in | | Screwdriver | 3mm slotted or Phillips No 1 | PIM60.125 **PIANO-Series** 12V, 5A, 60W, SINGLE PHASE INPUT ### 12. LIFETIME EXPECTANCY The Lifetime expectancy shown in the table indicates the minimum operating hours (service life) and is determined by the lifetime expectancy of the built-in electrolytic capacitors. Lifetime expectancy is specified in operational hours and is calculated according to the capacitor's manufacturer specification. Please note: The manufacturer of the electrolytic capacitors only guarantees a maximum life of up to 15 years (131 400h). Any number exceeding this value is a calculated theoretical lifetime which can be used to compare devices. | | AC 100V | AC 120V | AC 230V | | |---------------------|----------------|----------------|----------|-----------------------| | Lifetime expectancy | 89 000h | 103 000h | 119 000h | At 12V, 5A and 40°C | | | 241 000h | 249 000h | 256 000h | At 12V, 2.5A and 40°C | | | 252 000h | 292 000h | 335 000h | At 12V, 5A and 25°C | | | 680 000h | 704 000h | 724 000h | At 12V, 2.5A and 25°C | ## **13. MTBF** MTBF stands for **M**ean **T**ime **B**etween **F**ailure, which is calculated according to statistical device failures, and indicates reliability of a device. It is the statistical representation of the likelihood of a unit to fail and does not necessarily represent the life of a product. The MTBF figure is a statistical representation of the likelihood of a device to fail. A MTBF figure of e.g. 1 000 000h means that statistically one unit will fail every 100 hours if 10 000 units are installed in the field. However, it can not be determined if the failed unit has been running for 50 000h or only for 100h. For these types of units the MTTF (Mean Time To Failure) value is the same value as the MTBF value. | | AC 100V | AC 120V | AC 230V | | |--------------------------|----------------|----------------|----------------|--------------------------------------| | MTBF SN 29500, IEC 61709 | T.B.D. | T.B.D. | T.B.D. | At 12V, 5A and 40°C | | | T.B.D. | T.B.D. | T.B.D. | At 12V, 5A and 25°C | | MTBF MIL HDBK 217F | T.B.D. | T.B.D. | T.B.D. | At 12V, 5A, 40°C; Ground Benign GB40 | | | T.B.D. | T.B.D. | T.B.D. | At 12V, 5A, 25°C; Ground Benign GB25 | | | T.B.D. | T.B.D. | T.B.D. | At 12V, 5A, 40°C; Ground Fixed GF40 | | | T.B.D. | T.B.D. | T.B.D. | At 12V, 5A, 25°C; Ground Fixed GF25 | PIM60.125 **PIANO-Series** 12V, 5A, 60W, SINGLE PHASE INPUT ### 14. EMC The EMC behavior of the device is designed for applications in industrial environment as well as in residential, commercial and light industry environments. The device complies with EN 61000-6-1, EN 61000-6-2, EN 61000-6-3, EN 61000-6-4, EN 61000-3-2 and EN 61000-3-3. The device complies with FCC Part 15 rules. Operation is subjected to following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation. Do not use this device on AC 100V mains with more than 3.6A load when the application is sensitive to short output voltage dips during mains interruptions even with a length shorter than 20ms. Without additional measures to reduce the conducted emissions on the output (e.g. by using a filter), the device is not suited to supply a local DC power network in residential, commercial and light-industrial environments. No restrictions apply for local DC power networks in industrial environments. #### **EMC Immunity** | Electrostatic discharge | EN 61000-4-2 | Contact discharge | 8kV | Criterion A | |--------------------------|---------------|------------------------|---------------|---------------| | _ | | Air discharge | 8kV | Criterion A | | Electromagnetic RF field | EN 61000-4-3 | 80MHz-6GHz | 10V/m | Criterion A | | Fast transients (Burst) | EN 61000-4-4 | Input lines | 4kV | Criterion A | | | | Output lines | 2kV | Criterion A | | Surge voltage on input | EN 61000-4-5 | $L \rightarrow N$ | 2kV | Criterion A | | | | $N/L \rightarrow PE$ | 4kV | Criterion A | | Surge voltage on output | EN 61000-4-5 | + → - | 1kV | Criterion A | | | | + → PE | 1kV | Criterion A | | | | - → PE | 1kV | Criterion A | | Conducted disturbance | EN 61000-4-6 | 0.15-80MHz | 10V | Criterion A | | Mains voltage dips | EN 61000-4-11 | 0% of 100Vac | 0Vac, 20ms | Criterion A/C | | | | 40% of 100Vac | 40Vac, 200ms | Criterion C | | | | 70% of 100Vac | 70Vac, 500ms | Criterion A | | | | 0% of 120Vac | 0Vac, 20ms | Criterion A | | | | 40% of 120Vac | 48Vac, 200ms | Criterion C | | | | 70% of 120Vac | 84Vac, 500ms | Criterion A | | | | 0% of 200Vac | 0Vac, 20ms | Criterion A | | | | 40% of 200Vac | 80Vac, 200ms | Criterion A | | | | 70% of 200Vac | 140Vac, 500ms | Criterion A | | Voltage interruptions | EN 61000-4-11 | 0V | 5000ms | Criterion C | | Powerful transients | VDE 0160 | Over entire load range | 750V, 1.3ms | Criterion A | | | | | | | #### Criterions: - A: The device shows normal operation behavior within the defined limits. - **B:** The device operates continuously during and after the test. During the test minor temporary impairments may occur, which will be corrected by the device itself. - C: Temporary loss of function is possible. The device may shut-down and restarts by itself. No damage or hazards for the device will occur. A/C: Criterion A for output current below 3.6A and criterion C for output currents above 3.6A. #### **EMC Emission** | Conducted emission input lines | EN 55011, EN 55022, FCC Part 15,
CISPR 11, CISPR 22 | Class B | |---------------------------------|--|--| | Conducted emission output lines | IEC/CISPR 16-1-2, IEC/CISPR 16-2-1 | Limits for local DC power networks not fulfilled. | | Radiated emission | EN 55011, EN 55022, CISPR 11, CISPR 22 | Class B | | Harmonic input current | EN 61000-3-2 | Fulfilled (Class A) | | Voltage fluctuations, flicker | EN 61000-3-3 | Fulfilled, tested with non pulsing constant current loads. | PIM60.125 **PIANO-Series** 12V, 5A, 60W, SINGLE PHASE INPUT | | _ | | |-----------|---------|-------| | Switching | Frequer | icies | | | | | | Main converter | 40kHz to 140kHz | Input voltage and output load dependent | | |----------------|-----------------|---|--| |----------------|-----------------|---|--| # 15. ENVIRONMENT | Operational temperature | -10°C to +70°C (14°F to 158°F) | The operational temperature is the ambient or surrounding temperature and is defined as the air temperature 2cm below the device. | | |---------------------------|--|---|--| | Storage temperature | -40°C to +85°C (-40°F to 185°F) | For storage and transportation | | | Output de-rating | 0.12A/°C
0.3A/1000m or 5°C/1000m | Between +60°C and +70°C (140°F to 158°F)
For altitudes above 2000m (6560ft), see Fig. 15-2 | | | | | ntrolled. The user has to take this into consideration to imits in order not to overload the unit. | | | Humidity | 5 to 95% r.H. | According to IEC 60068-2-30 No condensation allowed. | | | Atmospheric pressure | 110-54kPa | See Fig. 15-2 for details | | | Altitude | Up to 5000m (16 400ft) | See Fig. 15-2 for details | | | Over-voltage category | II | According to IEC 60664-1, for altitudes up to 5000m | | | Impulse withstand voltage | 4kV (according to over-voltage category III) | Input to PE
According to IEC 60664-1, for altitudes up to 2000m | | | Degree of pollution | 2 | According to IEC 60664-1, non conductive | | | Vibration sinusoidal | 2-17.8Hz: ±1.6mm
17.8-500Hz: 2g
2 hours / axis | According to IEC 60068-2-6 | | | Shock | 30g 6ms, 20g 11ms
3 bumps / direction
18 bumps in total | According to IEC 60068-2-27 | | | | Shock and vibration is tested in combination with DIN-Rails according to EN 60715 with a height of 15mm and a thickness of 1.3mm. | | | | LABS compatibility | As a rule, only non-silicon precipitating materials are used. The unit conforms to the LABS criteria and is suitable for use in paint shops. | | | | Corrosive gases | Compliant to ISA-71.04-1985, Severity Level G3 and IEC 60068-2-60 Test Ke Method 4 for a service life of minimum 10 years in these environments. | | | Fig. 15-1 **Output power vs. ambient temp.** Fig. 15-2 **Output power vs. altitude** PIM60.125 **PIANO-Series** 12V, 5A, 60W, SINGLE PHASE INPUT # 16. SAFETY AND PROTECTION FEATURES | Isolation resistance | Min. | 500MOhm | At delivered condition between input and output, measured with 500Vdc | |---------------------------------|------|-------------------------------|---| | | Min. | 500MOhm | At delivered condition between input and PE, measured with 500Vdc | | | Min. | 500MOhm | At delivered condition between output and PE, measured with 500Vdc | | Output over-voltage protection | Тур. | 15.5Vdc | | | | Max. | 16.0Vdc | | | | | | ect, a redundant circuit limits the maximum output
ut shuts down. To attempt a restart, turn the input | | Class of protection | | 1 | According to IEC 61140 | | Degree of ingress protection | | IP20 | According to EN/IEC 60529 | | Over-temperature protection | | Not included | | | Input transient protection | | MOV
(Metal Oxide Varistor) | For protection values see chapter "EMC". | | Internal input fuse | | Included | Not user replaceable slow-blow high-braking capacity fuse | | Touch current (leakage current) | Тур. | 30μΑ / 60μΑ | At 100Vac, 50Hz, TN-,TT-mains / IT-mains | | | Тур. | 40μΑ / 90μΑ | At 120Vac, 60Hz, TN-,TT-mains / IT-mains | | | Тур. | 70μΑ / 140μΑ | At 230Vac, 50Hz, TN-,TT-mains / IT-mains | | | Max. | 40μΑ / 70μΑ | At 110Vac, 50Hz, TN-,TT-mains / IT-mains | | | Max. | 50μΑ / 110μΑ | At 132Vac, 60Hz, TN-,TT-mains / IT-mains | | | Max. | 100μΑ / 180μΑ | At 264Vac, 50Hz, TN-,TT-mains / IT-mains | PIM60.125 **PIANO-Series** 12V, 5A, 60W, SINGLE PHASE INPUT ## 17. DIELECTRIC STRENGTH The output voltage is floating and has no ohmic connection to the ground. The output is insulated to the input by a double or reinforced insulation. Type and routine tests are conducted by the manufacturer. Field tests may be conducted in the field using the appropriate test equipment which applies the voltage with a slow ramp (2s up and 2s down). Connect all phase-terminals together as well as all output poles before conducting the test. When testing, set the cut-off current settings to the value in the table below. It is recommended that either the + pole or the - pole shall be connected to the protective earth system. This helps to avoid situations in which a load starts unexpectedly or can not be switched off when unnoticed earth faults occur. Fig. 17-1 Dielectric strength | | | Α | В | C | |------------------------------------|-----|---------|---------|---------| | Type test | 60s | 2500Vac | 3000Vac | 1000Vac | | Routine test | 5s | 2500Vac | 2500Vac | 500Vac | | Field test | 5s | 2000Vac | 2000Vac | 500Vac | | Cut-off current setting field test | for | > 2mA | > 2mA | > 6mA | PIM60.125 **PIANO-Series** 12V, 5A, 60W, SINGLE PHASE INPUT # 18. APPROVALS AND FULFILLED STANDARDS | IEC 61010
(planned) | IECEE
CB SCHEME | CB Scheme Certificate
IEC 61010-2-201 Electrical Equipment for Measurement, Control
and Laboratory Use - Particular requirements for control
equipment | |--|----------------------------|--| | IEC 62368
(planned) | IECEE
CB SCHEME | CB Scheme Certificate
IEC 62368-1 Audio/video, information and communication
technology equipment - Safety requirements
Output safety level: ES1 | | UL 61010-2-201
(former UL 508)
(planned) | C US LISTED Ind. Cont. Eq. | UL Certificate Listed equipment for category NMTR - UL 61010-2-201 Electrical Equipment for Measurement, Control and Laboratory Use - Particular requirements for control equipment Applicable for US and Canada E-File: E198865 | | NEC CLASS 2
(planned) | NEC CLASS 2 | UL Certificate NEC CLASS 2 - Limited Power Source Listed in the UL 61010-2-201 approval report, investigated according to UL 1310 | # 19. REGULATORY COMPLIANCE | CE | (€ | EU Declaration of Conformity Trade conformity assessment for Europe The CE mark indicates conformance with the European - RoHS directive, - EMC directive and the - Low-voltage directive (LVD) | |---------------------|----------------|---| | REACH Directive | REACH ✓ | Manufacturer's Statement EU-Regulation regarding the Registration, Evaluation, Authorisation and Restriction of Chemicals | | WEEE Directive | | Manufacturer's Statement
EU-Directive on Waste Electrical and Electronic Equipment | | RoHS (China RoHS 2) | 25 | Manufacturer's Statement Administrative Measures for the Restriction of the Use of Hazardous Substances in Electrical and Electronic Products 25 years | PIM60.125 PIANO-Series 12V, 5A, 60W, SINGLE PHASE INPUT # 20. PHYSICAL DIMENSIONS AND WEIGHT | Width
Height | 36mm 1.42''
90mm 3.54'' | | |-------------------------|--|--| | Depth | 91mm 3.58" The DIN-rail height must be added to the unit depth to calculate the total required installation depth. | | | Weight | 220g / 0.49lb | | | DIN-Rail | Use 35mm DIN-rails according to EN 60715 or EN 50022 with a height of 7.5 or 15mm. | | | Housing material | High-grade polycarbonate/ ABS blend material | | | Installation clearances | See chapter "Installation Instructions" | | | Penetration protection | Small parts like screws, nuts, etc. with a diameter larger than 4.2mm. | | Fig. 20-1 Front view Fig. 20-2 Side view ## 21. APPLICATION NOTES #### 21.1. CHARGING OF BATTERIES Do not use the power supply to charge batteries. #### 21.2. SERIES OPERATION Devices of the same type can be connected in series for higher output voltages. It is possible to connect as many units in series as needed, providing the sum of the output voltage does not exceed 150Vdc. Voltages with a potential above 60Vdc must be installed with a protection against touching. Avoid return voltage (e.g. from a decelerating motor or battery) which is applied to the output terminals. Keep an installation clearance of 15mm (left / right) between two power supplies and avoid installing the power supplies on top of each other. Pay attention that leakage current, EMI, inrush current, harmonics will increase when using multiple devices. #### 21.3. Parallel Use to Increase Output Power Do not parallel devices for higher output currents. #### 21.4. Parallel Use for 1+1 Redundancy This device is not recommended to build redundant systems since there is no monitoring (DC OK signal) included. #### 21.5. OPERATION ON TWO PHASES The power supply can also be used on two-phases of a three-phase-system. Such a phase-to-phase connection is allowed as long as the supplying voltage is below $240V^{+10\%}$. Ensure that the wire, which is connected to the N-terminal, is appropriately fused. PIM60.125 **PIANO-Series** 12V, 5A, 60W, SINGLE PHASE INPUT ## 21.6. Use in a Tightly Sealed Enclosure When the device is installed in a tightly sealed enclosure, the temperature inside the enclosure will be higher than outside. In such situations, the inside temperature defines the ambient temperature for the device. In the following test setup, the device is placed in the middle of the box, no other heat producing items are inside the box. The load is placed outside the box. The temperature sensor inside the box is placed in the middle of the right side of the power supply with a distance of 1cm. The following measurement results can be used as a reference to estimate the temperature rise inside the enclosure. | | Case A | Case B | |-----------------------------|---------------------------|---------------------------| | Enclosure size | 110x180x165mm | 110x180x165mm | | | Rittal Typ IP66 Box | Rittal Typ IP66 Box | | | PK 9516 100, plastic | PK 9516 100, plastic | | Input voltage | 230Vac | 230Vac | | Load | 12V, 4.0A (= 80%) | 12V, 5A; (= 100 %) | | Temperature inside the box | 30.9°C | 32.3°C | | Temperature outside the box | 21.0°C | 21.0°C | | Temperature rise | 9.9K | 11.3K |